
ML Phishing Detection Extension

Hussain Zainal​
Cyber Security Department​
George Mason University​

Fairfax, VA​
hzainal@gmu.edu

Nate Le​
Cyber Security Department​
George Mason University​

Fairfax, VA​
nle51@gmu.edu

Supreeth Gowda A​
Cyber Security Department​
George Mason University​

Fairfax, VA​
sashwath@gmu.edu

Abstract—Phishing remains one of the most effective yet
common cyber threats, exploiting human behavior by
engineering deceptive websites to steal vital information. The
evolving phishing tactics are outpacing native safe browser
support. This project proposes a Chrome extension that
integrates a multi-layered phishing detection approach by
using ML, URL similarity detection, network behavior
analysis, and page design analysis. This extension provides to
not only protect users, but to also educate them on why a
website has been flagged as phishing. Evaluation will be
performed on phishing and legitimate website datasets with
performance measured by accuracy and precision.

Keywords—Phishing Detection, Machine Learning, Network
Behavior, Feature Design

I.​ INTRODUCTION
Our project proposes developing a Google Chrome

Extension that combines multiple phishing detection
techniques such as URL similarity analysis, network
behavior monitoring, and machine learning. The extension
will analyze URLs via logistic regression, inspect page
content, and observe network request behavior to provide
real-time warnings to users. By combining multiple
phishing detection strategies, the extension's goal is to catch
attacks that evade traditional blacklist systems and provide
users explainable insights on why such websites might be
dangerous.

II.​ MOTIVATION FOR PROJECT

Phishing continues to be one of the most widespread
and effective cyber threats, as more breakthroughs are made
in the field of cybersecurity, human behavior remains to still
be the weakest link in a system. Not only would this
extension assist in preventing successful phishing attacks,
but it would also assist users to be able to identify broader
patterns of online deception. By presenting clear
explanations on why a website has been flagged as
suspicious, the users can be educated and build long-term
awareness as phishing gets more advanced.

As graduate students currently taking network security,
we are motivated to pursue this project due to the
opportunity to apply network security concepts in a practical
manner. Building a chrome extension allows us to design,
implement, and evaluate practical countermeasures and
helps bridge the gap between security research and software
engineering. This endeavor would help strengthen our
knowledge of protocols, traffic patterns and adversarial
behavior. By doing so, we are able to incorporate network
security in a practical sense alongside with our other skills
we are implementing into this project.

III. BACKGROUND
Phishing has evolved into one of the most common

attack vectors and damaging forms of cybercrime, targeting
the most vulnerable within a system, the human. By
impersonating trusted entities, attackers deceive users into
willingly give up their sensitive information instead of

relying on technical attacks. As a result, phishing continues
to dominate cyber incident reports, forcing security
researchers to develop advanced detection mechanisms that
have to stay up to date with the rapid evolution of phishing
techniques.

Phishing website detection has shifted from heuristic
and blacklist-based approaches and towards machine
learning classification due to its rising sophistication.
Traditional systems struggle against zero-day threats,
whereas machine learning models can learn based on
statistical irregularities rather than predetermined cases.
URL-based ML models transform the URL string into
lexical and structural attributes, such as: length, entropy,
homograph similarity, etc, all as numerical values.
Classifiers such as a Random Forest algorithm identify
patterns present within the relationship between attributes
and can correlate it with phishing behaviour. The random
forest algorithm consists of multiple decision trees that
come together and have a majority vote of their final
classification results. Each tree provides its own answer
which gives developers and researchers a deeper insight of
what features contribute to a decision the most. This makes
it well-suited as the first line of defense in a phishing
detection system.

However, modern phishing pages have developed
counterstrategies that can get lower confidence scores when
it comes to URL-only detection by using “safe” domains
while embedding deceptive behaviour within the page
content itself. This has driven the need for a hybrid
detection model that combines URL-level classifiers with
page content based analysis. Page level features include
internal vs external link ratios, resource complexity,
credential entry fields, metadata consistency, and more.

Deploying a machine learning extension inside a
browser extension would be able to combine both
approaches into one. There are additional constraints that
come with Chrome’s Manifest V3 architecture which limits
access to network requests, background execution and
deeper level inspection of APIs. These restrictions require
inference logic to run locally using only client-visible
features such as URLs and DOM content. The random
forest models trained have to be stored in a browser
compatible JSON format and have to be executed via
custom JavaScript tree traversal. Ensuring that feature
extraction remains efficient for real-time browsing is a key
challenge. The nature of Random Forest provides rankings
of feature importance which will be key for providing user
explanations on why a website has triggered the phishing
warning.

IV.​ URL ANALYSIS

A.​ Objective

This section presents the development and evaluation of
a machine learning subsystem designed for detecting if a
given URL is either a phishing website or legitimate. The
approach focuses on analyzing characteristics that were

extracted from the URL itself. Unlike content-based or
visual similarity models, this relies solely on URL-level
features, enabling faster-real time evaluation. The objective
of this component within the entire application is to be the
first line of defense, flagging potential phishing attempts
before content rendering or user interaction occurs.

B.​ Dataset and Preprocessing

​ The dataset has over 235,000 URLs from multiple
distinct sources to ensure a diverse and balanced dataset
source of both legitimate and phishing websites. To ensure
integrity, all URLs were validated and normalized through
the following standardization process:

●​ Lowercasing all characters
●​ Removing trailing slashes
●​ Normalizing URL encodings
●​ Removing redundant delimiters
●​ Deduplicating URLs to prevent Bias

C.​ Url Feature Engineering

Each URL is transformed into a multi-dimensional
numerical representation composed of 50 features across
structural, domain-level, semantic, and statistical indicators.
This ensures the model can learn from both explicit patterns
(e.g., suspicious tokens) and latent irregularities (e.g.,
entropy deviations).

Category Features

Basic URL Structure (12) Url_length, domain_length,
domain_name_length,
tld_length, path_length,
query_length, path_depth,
character counts,
has_file_extension,
suspicious_file_ext,
double_slash,
trialing_slash, uses_http,
uses_https

Domain Analysis (8) Subdomain_count,
has_subdomain, has_port,
has_ip, has_suspicious_tld,
has_numbers_in_domain,
domain_entropy

Path Metrics(3) Num_params,
has_suspicious_params,
query_length, path_length,
path_depth, file extensions

Suspicious Patterns &
Obfuscation (10)

Has_at_symbol,
has_shortner,
has_suspicious_keywords,
has_obfuscation,
num_obfuscated_chars,
obfuscation_ratio,
digit_ratio, letter_ratio,

special_char_ratio,
url_entropy

Brand Detection &
Homograph (9)

Suspicious_brand_usage,
brand_in_registered_domai
n, brand_in_subdomain,
brand_in_path_or_query,
brand_mismatch,
brand_similairity_registere
d,
brand_similarirty_subdoma
in, brand_similairty_path,
brand_homograph

Fig. 1. URL Feature categories

D. Hybrid Domain-Path Ensemble

A key innovation in this implementation was a
dual-model weighted ensemble approach that separated
domain analysis from path analysis. The path model did
reuse non-domain specific features present in the domain
analysis. The total weighted model had a 80% domain 20%
pathing split.

Parameter Value

Number of Trees 100

Max Depth 10

Min samples per Leaf 5

Min Samples Split 5

Sampling Bootstrap

Criterion Gini Impurity

Training-Testing split 85-15

Figure 2, URL Model Param Values

E. Testing Results and Evaluation

Below are the testing results and evaluation of the ML
algorithm using the gathered datasets.

Metric Score

Accuracy 99.33%

Precision 99.45%

Recall 99.38%

F1-Score 99.42%

False negatives 126

False positives 113

True Negatives 14,973

True Positives 20,358

Fig. 3. Final URL Model Results

The top contributing features reveal that protocol and
path structure are the strongest indicators, with protocol
features resulting in 41.7% of model decisions, path
structure features contributing 32.5%, and the remaining six
out of the top 10 resulting in ~17%

Feature Importance

uses_https 22.38%

uses_http 19.32%

num_slashes 12.48%

path_depth 10.66%

digit_ratio 3.96%

brand_similarity_subdomai
n

3.93%

trailing_slash 3.37%

url_length 2.04%

Brand_similiarity_path 1.90%

Fig. 4. Top 10 important URL features

Manual inspection of misclassified URLs revealed that
196 out of the 239 total errors (82%) with 102 false
positives and 94 false negatives involved URLs with
irregularly long or complex paths. This can be attributed to
the limited path-specific feature set, which lacks granularity
to distinguish between legitimate complex paths and
malicious obfuscation. Specifically, legitimate URLs
containing UUIDs, session tokens, hash identified,
legitimate file names inflate path length and entropy metrics
in ways that are similar to phishing characteristics.
Additionally, path segments such as /login, /verify, account
trigger false positives despite being commonplace in
legitimate authentication flows.

F. Conclusion of URL analysis

The URL-based model achieves 99.93% accuracy with
minimal false negatives making it suitable to act as the
first-line of defense. The hybrid domain-path ensemble
architecture provides flexibility in weighting component
contributions and the feature importance analysis confirms
that path complexity and protocols are the most

discriminating factors in identifying phishing attempts.
Error analysis reveals that the majority of misclassifications
stem from path complexity edge cases that context-aware
keyword analysis and feature engineering around UUID
recognition would be needed for real world accuracy
improvements.

V. WEBSITE DESIGN ANALYSIS

A.​ Objective

The webpage design analysis module aims to examine
the visual and structural components of a website to detect
subtle differences between legitimate and phishing pages.
While the URL-based model focuses on string-level
analysis, this stage evaluates what is actually displayed once
the page is loaded. By analyzing the Document Object
Model (DOM), visible content, embedded resources, and
basic network behavior indicators, the system provides a
deeper layer of defense against deceptive phishing attacks.
This layer acts as the second line of defense after URL
analysis, specifically targeting phishing sites that use
safe-looking URLs but expose inconsistencies in page
design. According to Li et al. [1], integrating content-based
and structure-based webpage features significantly improves
phishing detection accuracy compared to URL-only
methods.

B.​ Data Collection and Scraping

To extract webpage data, we automated the process using
Selenium WebDriver and BeautifulSoup. Selenium was
employed to load each webpage, including dynamically
generated content, while BeautifulSoup was used to parse
the rendered HTML. This hybrid approach allowed us to
analyze both static and dynamic features of the page,
consistent with recommended practices in feature-based
phishing detection research [1].

The scraper captured multiple elements from each
webpage:

The scraper captured multiple elements from each webpage:

●​ Page Text: all visible text from headings,

paragraphs, and hyperlinks

●​ Images and Media: image filenames, counts, and
embedded resource paths

●​ Links and Forms: ratio of internal to external links,
presence of credential fields, and use of suspicious
keywords such as 'login', 'verify', or 'update'

●​ Layout Characteristics: DOM depth, number of
unique HTML tags, and the ratio of scripts to
content tags

●​ Network Activity: external resource requests, SSL
certificate data, and domain origins of linked
elements

All collected attributes were converted into numeric or
boolean representations to ensure they could be easily
incorporated into a machine learning pipeline.

C.​ Feature Engineering

Following Li et al. [1], content structure and network
interaction patterns provide valuable indicators of phishing
activity. This separate page dataset contained 235,000
webpages with pre-extracted HTML features. Each page
was scraped and analyzed to extract structural and
content-based indicators to be trained on with the same
Random Forest model architecture used for URL analysis.
Each webpage has 28 features extracted from the scraped
content organized into the following categories:

Category Features

Content Structure (3) LineOfCode,
LargestLineLength,
HasTitle

Title Matching (2) DomainTitleMatchScore,
URLTitleMatchScore

Trust Signals (4) HasFavicon, Robots,
IsResponsive,
HasCopyRightInfo

Redirect Analysis (2) NoOfURLRedirect,
NoOfSelfRedirect

Metadata (1) HasDescription

DOM Structure (2) NoOfPopup, NoOfiFRame

Form Analysis (4) HasExternalFormSubmit,
HasSubmitButton,
HasHiddenFields,
HasPasswordField

Social Presence(1) HasSocialNet

Keyword Detection (3) Bank, Pay, Crypto

Resource Counts (3) NoOfImage, NoOfCSS,
NoOfJS

Link Analysis (3) NoOfSelfRef,
NoOfEmptyRef,
NoOfExternalRef

Fig. 5. Page Model Features

D.​ Role in the System

The page analysis module runs after the initial URL
screening and provides deeper inspection of the page's
visual and structural behavior. It is particularly effective at
detecting cloned or template-based phishing pages that may

bypass URL-level checks. The contribution to the final
model follows a weighted ensemble approach:

●​ URL Model: 80% weight
●​ Page Model: 20% weight

The combined score generates a risk rating of Safe, Mixed,
or Suspicious. This weighting reflects the reliability
hierarchy where URL features provide faster, more
definitive signals, while page features add contextual
validation and reduce false negatives.

E.​ Feature importance Analysis

The top contributing features reveal that external
reference patterns and resource and resource counts provide
the strongest indicators to determine a page's legitimacy.

Feature Importance

NoOfExternalRef 24.67%

NoOfSelfReg 14.91%

NoOfImage 13.15%

LineOfCode 12.22%

NoOfJS 8.44%

NoOfCSS 6.22%

HasSocialNet 5.68%

HasCopyRightInfo 4.51%

HasDescription 3.14%

Fig. 6. Top 10 Important Page Model Features

F.​ Results & Parameters

Parameter Value

Number of Trees 100

Max Depth 10

Min samples per Leaf 2

Min Samples Split 5

Sampling Bootstrap

Criterion Gini Impurity

Training-Testing split 85-15

Figure 7, Page model Param Values

Metric Score

Accuracy 99.70%

Precision 99.70%

Recall 99.70%

F1-Score 99.70%

True positives 20,207

True negatives 15,056

False positives 86

False negatives 20

Fig. 8. Final Page Model Results

G.​ Key Findings

1)​ Link Structure

Link analysis features (NoOfExternalRef, NoOfSelfRef)
accounted for over 39.5% of model decisions, indicating
that phishing pages exhibit distinct linking patterns, often
lacking internal navigation or containing excessive external
references. Phishing sites often contain a disproportionate
amount of external references because common attack kits
typically load scripts, images, and styling resources from
third-party hosting services to reduce development effort
while trying to maximize its likelihood of seeming
legitimate. Conversely, legitimate websites employ their
own link ecosystem that reinforces branding and site
identity. This aligns with existing research showing that
phishing pages generally contain fewer internal links and a
shallower structure depth than legitimate domains [2].

2)​ Resource Complexity Reflects Development
Investment

Resource complexity features contributed to 40% of
model decisions, showcasing that phishing pages are
typically simpler clones with fewer assets. As a result,
phishing pages contain fewer images, shorter frontend code,
and minimal CSS & JavaScript. Legitimate websites invest
in more media assets, dynamic components, responsive
frameworks, and interactive website design. Security trend
reports state that due to the short-lived, low-investment
nature of phishing pages, they are designed with rapid
deployment in mind, which contributes to their low resource
diversity [3].

3)​ Trust Signal Absence

Professional indicator features (HasSocialNet,
HasCopyRightInfo, HasDescription) contribute to 13.51%

of the model's decision-making. Legitimate organizations
reliably include social media icons, copyright notices,
brand metadata, and SEO-optimized metadata. These
attributes do not assist in tricking users about the
legitimacy of a website. Prior studies confirm that the
absence of branding signals indicates a higher likelihood of
phishing attempts [4].

4)​ Form Features as Secondary Validators

Despite form-related features (HasPasswordField,
HasHiddenFields) not showing significant individual
importance, they remain essential for detecting credential
harvesting behavior. Their significance only shows when
combined with other suspicious features. Research supports
that form characteristics when tested individually are weak
indicators but they become high-level discriminators when
assessed in tandem with structural and content-level
anomalies [5].

H. Benefits of the Page Analysis Layer

The integration of page-based analysis provides several key
advantages:

●​ Reduces false negatives by catching sophisticated
phishing attempts that pass URL screening

●​ Detects fake login pages and brand impersonation
through content and form analysis

●​ Improves reliability of the extension's warnings
through multi-layered validation

●​ Catches cloned pages that replicate legitimate
designs but lack proper resource investment

I. Issues & Limitations

1)​ Dynamic content & JavaScript Rendering

A major limitation of a page-based ML analysis
approach is the inability to fully analyze dynamically
rendered content. This was an issue due to our scraping
implementation being unable to obtain these features, which
was consistent with the referenced datasets also not having
those features listed. Modern phishing kits are increasingly
using script-injected content which is both difficult to
scrape, and to assess its harm capabilities without fully
rendering the website. Lastly, because our system captures
the DOM at a single point in time, it may miss malicious
elements introduced at a later point.

2)​ Redirect Chain Analysis

The redirect-related features exhibited insignificant
importance totalling 0.0502%. This is due to Google
Chrome extensions being entirely unable to observe
HTTP-level request sequences. DOM inspect cannot
reliably expose redirect chains, especially before the page
fully loads.

3)​ Single-Page analysis scope

The current model analyzes pages individually without
evaluating pages across the entire site. While phishing

websites tend to be shallow and not have many subpages as
they tend to only have isolated credential harvesting pages;
Having multiple pages is a good sign of a website's
legitimacy. Expanding the analysis to multi-page behaviour
could improve accuracy but would run into the risk of
causing server issues due to deeper page scraping.

VI. EXTENSION IMPLEMENTATION

To achieve a reliable phishing detection, we combined
the URL-based approach with the page-based approach.
Each technique captures different dimensions of phishing
behaviour, and their integrations from a multi-layered
defense. The integration pipeline follows a staged sequential
workflow:

A.​ Stage 1- URL Pre-screening (Fast Filter Layer)

When a user attempts to access a website, the extension
immediately extracts and processes the raw URL.

●​ The engineered URL features are computed locally

●​ The random forest ensemble provides a probability
score indicating the likelihood that the website is a
phishing site.

●​ If the prediction is above the warning threshold
(>0.5), the extension issues a warning.

●​ If the prediction is above the blocked threshold
(>0.85), the extension blocks the website entirely
while providing the user why it has been flagged
along with the option to continue.

B.​ Stage 2 - Webpage Design

 Once the URL passes initial screening or receives a
borderline score, the extension proceeds to analyze the
rendered website:

●​ DOM Feature Extraction: After page load
completes, the content script extracts 28 features
(Section V) using JavaScript DOM APIs.

●​ Page Model Prediction: Features are sent to the
background service worker.

●​ Weighted Combination: The final phishing
likelihood is computed using weighted average:
Combine_Score = (URL_Score × 0.8) +
(Page_Score × 0.2)

●​ If combined_Score >= 0.7, a full-screen warning is
displayed to the user

1.​ Chrome Extension Architecture

The extension follows Chrome’s Manifest V3
architecture [6] with three core components

Background Service Worker (background.js) [7]:

●​ Loads both URL and Page ML models on
extension startup (JSON files)

●​ Monitors all tab navigation events
●​ Executes UrL prediction immediately on

navigation
●​ Receives page features from content scripts via

message passing
●​ Combines predictions using weighted averaging
●​ Triggers warning

Content Script (content.js) [8]:

●​ Injected into every webpage user visits
●​ Wait 500ms post-load for DOM stabilization
●​ Extract 28 page features
●​ Sends features to background worker
●​ Display warnings when phishing detected
●​ Shows discrete security badges with confidence

percentages

Popup Interface (popup.html/popup.js)

●​ Activated when user clicks extension icon
●​ Displays detailed analysis breakdown

Fig. 9. Popup Interface

2.​ Machine Learning Integration

The Python-trained scikit-learn Random Forest models
cannot run directly in browsers. We developed a conversion
pipeline:

Model Export WorkFlow:

1.​ Export Script: export_model_to_js.py and
export_page_model_to_js.py

2.​ Tree Extraction: Extracted decision tree structures
from RandomForestClassifier

3.​ Scaler Parameters: Exported StandardScaler mean
and scale values for feature normalization

4.​ Saved trees as JSON with split conditions and leaf
values

5.​ Model Variants: Generated full (100 trees) and lite
(30 trees) version.

JavaScript Model Implementation

http://background.js
http://content.js

●​ Implemented Random Forest prediction logic in
pure JavaScript (ml-model.js and page-model.js)

●​ Supports feature scaling, tree traversal, and voting
aggregation

Feature Extraction in JavaScript

●​ URL feature extraction ported to url-features.js
●​ Webpage feature extraction uses DOM APIs (e.g.,

querySelectorALL)

3. User Interface and Warning System

Fig. 10. Full-Screen Phishing Warning

Displayed when the combined Score >= 0.7:

●​ Large warning icon and color-coded risk indicator.
●​ Show URL, prediction scores, and key reasons for

detection.
●​ “Go Back to Safety” and “Proceed Anyway”

actions.
●​ Includes a short disclaimer emphasizing possible

positives

Security badge displayed for all analyzed pages

●​ Green badge for safe sites
●​ Red badge for suspicious pages with confidence

score.
●​ Clicking the badge opens a detailed view in the

popup.
●​ Automatically fades for low-risk pages to avoid

alert fatigue.

4. Performance Optimization

●​ Caching: 10-minutes LRU cache for URL
predictions (<5ms lookup)

●​ Lite Models: Reduced model size by 78% with
<1% accuracy loss.

●​ Lazy Loading: Models loaded on Startup; fallback
deferred loader for reliability

 5. Deployment

Current deployment uses Chrome Developer Mode:

1.​ Navigate to chrome://extensions/
2.​ Enable Developer mode.
3.​ Select Load unpacked and choose the extension

folder.

4.​ Extension loads immediately for testing and
evaluation.

 6. Challenges

●​ Random Forest in Browser: Python model cannot
run in JavaScript.

●​ Models too large & Slow performance: Original
full models are too large (100 trees) which make
the loading time long (~2.5 ms).

●​ Some features only indicate phishing when
combined with other features. For example, having
multiple login forms is only suspicious if the site
also lacks HTTPS. Individual feature flags in
isolation can mislead users into thinking legit sites
are dangerous.

VII. CONCLUSION

A.​ Main Limitations & Issues faced

Although the system demonstrated capability in detecting
site legitimacy with high accuracy in controlled testing,
several limitations constrained its real-world performance.
A major limitation of the extension was its inability to
scrape and analyze dynamically injected JavaScript content,
which is a critical feature for determining a website's status.
Modern phishing sites often render credential fields after the
initial DOM load, but our extension only captures the initial
snapshot of the website at 500ms post-load and could miss
key details that appear later.

Another significant limitation stemmed from Chrome's
Manifest V3 architecture, which severely restricts an
extension's access to network-level data. Because service
workers cannot inspect full redirect chains and certificate
details, redirect-related features contributed insignificantly
(0.0502%). These restrictions prevented implementing
Layer 3 network analysis that was present in the original
project plan, which would have monitored SSL/TLS
certificates, tracked redirect chains, analyzed external
resource requests, and detected mixed content and
suspicious connections.

Despite the large dataset of 235,000+ entries for both URL
and page models, limitations persisted. The page dataset
was missing multiple features such as dynamically rendered
attributes and comprehensive robot.txt checks, reducing
model generalizability. The URL dataset had heavy
emphasis on domains, making URLs with complex paths
less commonplace. The model tended to overfit on
domain-based analysis rather than holistic URL evaluation.
For example, legitimate URLs with long paths containing
UUIDs would trigger detection trees that emphasized URL
length. While this issue was addressed with a split
URL/Domain model with 80-20 weighting, the reference set
for path-heavy URLs remained limited.

Real-world testing revealed a higher false positive rate than
the ML testing phase indicated. This discrepancy occurred
because real testing happened late in development, causing
unexpected edge cases to surface (mostly path-based). The
HTTP/HTTPS feature dominance (40% combined

http://ml-model.js
http://page-model.js
http://url-features.js

importance) meant that nearly every non-HTTPS URL was
immediately flagged. Several features had less than 0.001%
importance, indicating poor feature engineering decisions.
Additionally, localhost testing for fake websites produced
flags that would not be present in production environments,
skewing early validation results.

Despite these constraints, each limitation provides a clear
direction for future improvements. Addressing them will be
crucial to enhance the extension's reliability in real-world
settings that are increasingly dependent on dynamic content
and modern web technologies.

B.​ Future work

Looking ahead, several enhancements can improve the
reliability and adaptability of this extension in real-world
scenarios. One major direction is the development of a
vetted community-driven blacklist and whitelist system.
When a report is submitted and verified, it can be added to
the training data for continuous model improvement. A
dynamic whitelist would not only reduce false positives in
production but could enable more precise detection of brand
spoofing attacks, an area where URL-only heuristics remain
limited.

Currently, our extension flags individual features in
isolation (e.g, “brand name in URL”), this makes users
confused when they see warnings on legitimate sites, but the
Random Forest Model actually makes decisions based on
feature combinations. For example, multiple forms are only
suspicious when combined with things like missing HTTPS.
So our future work is to find a way to help users understand
why specific combinations indicate phishing rather than just
listing flagged features.

Expanding the diversity and scale of all datasets is
critical. The URL dataset needs more path-oriented URLs
with complex structures (UUIDs, session tokens, hash
identifiers) to improve the model's ability to distinguish
between legitimate complexity and malicious obfuscation.
The page dataset requires modernization with features that
capture JavaScript-rendered content, single-page application
behaviors, and contemporary web framework patterns.

Another critical improvement is advancing the page
analysis model to better support dynamic and
JavaScript-heavy websites. The present model struggled
with SPAs utilizing modern frameworks, suggesting that
feature extraction must incorporate behavior-based
monitoring and continuous DOM observation techniques
rather than single-point-in-time snapshots. Implementing
delayed feature extraction at multiple intervals or
monitoring DOM mutation events could capture phishing
elements that load asynchronously.

More rigorous real-world testing is essential. The
extension needs extensive testing with actual phishing
websites in production environments rather than localhost
simulations. This would expose edge cases earlier in
development and allow for iterative refinement of the model
and thresholds. Beta testing with real users could provide

valuable feedback on false positive rates and usability
issues.

Finally, revisiting the original vision for Layer 3 network
analysis remains a priority, as it provides a whole new
avenue for model features and assists with adding more
features for the page model. While Manifest V3 imposes
restrictions, exploring workarounds such as
declarativeNetRequest API capabilities or companion native
messaging hosts could enable limited network monitoring.
Features like certificate validation, mixed content detection,
and redirect chain analysis would significantly strengthen
detection capabilities.

Improving contextual explanations is also necessary.
Users need clearer, more actionable information about why
a site was flagged, presented in non-technical language.
This educational component enhances long-term user
awareness and trust in the system. Collectively, these
improvements would strengthen the extension's accuracy,
transparency, and usability, making it a production-ready
phishing defense system.

C.​ Final conclusion

The development of this multi-layed phishing detection
system demonstrates that combining URL-based machine
learning, DOM structural analysis, and browser-integrated
feature extraction can enhance real-time phishing protection.
The random forest URL model achieved high precision and
accuracy, proving the effectiveness of treating it as a first
line of defense. Complementing the URL model, the
webpage design model provided deeper insight into resource
usage, trust signals, link structures, and form behaviour, all
attributes that legitimate websites usually contain whereas
phishing pages often lack. The systems architecture
implemented within Chrome’s Manifest V3 constraints
utilizes these layers into a functional browser extension
capable of delivering clear and explainable warnings to
users.

Beyond classification performance, this project
highlights the importance of educating users about phishing
websites. The extension not only alerts users to malicious
activity but explains why the page is suspicious, reinforcing
safe browsing habits and long-term awareness. This hybrid
design also emphasizes the need of a holistic approach
rather than just focusing on one method. This project went
deeper when compared to the standard phishing URL ML
projects. By utilizing this extension in a real world setting,
project members were able to identify signs of a phishing
website that a traditional training/testing verification would.
Overall, this project bridges the gap between academic
research and deployable security tools, demonstrating a
practical and scalable framework for protecting users
against the increasingly sophisticated phishing landscape
and its threats.

VIII. REFERENCES
[1] W. Li, S. Manickam, Y.-W. Chong, W. Leng, and P.
Nanda, “A State-of-the-Art Review on Phishing Website
Detection Techniques,” IEEE Access, vol. 11, pp. 1–20,
2024, doi: 10.1109/ACCESS.2024.3514972.

[2] Mohammad, R., Thabtah, F., & McCluskey, L. (2013).
Predicting phishing websites based on self-structuring
neural networks.

[3] APWG. (2022). Phishing Trends Report.

[4] Liu, W., & Zhang, G. (2018). Phishing web page
detection by analyzing the page layout and contents.

[5] Abdelhamid, N., et al. (2014). Phishing Detection Based
on Hybrid Features.

[6] Google Chrome Developers, "Manifest V3 Overview,"
Chrome for Developers, 2023. [Online]. Available:
https://developer.chrome.com/docs/extensions/mv3/intro/.

[7] Google Chrome Developers, "Service Workers in
Chrome Extensions," Chrome for Developers, 2023.
[Online]. Available:
https://developer.chrome.com/docs/extensions/mv3/service_
workers/.

[8] Google Chrome Developers, "Content Scripts," Chrome
for Developers, 2023. [Online]. Available:
https://developer.chrome.com/docs/extensions/mv3/content_
scripts/.

[9] Github page
https://github.com/MarioDS15/CYSE610Project

​

https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/
https://github.com/MarioDS15/CYSE610Project

	I.​INTRODUCTION
	 II.​MOTIVATION FOR PROJECT
	III. BACKGROUND
	IV.​URL ANALYSIS
	V. WEBSITE DESIGN ANALYSIS
	VI. EXTENSION IMPLEMENTATION
	VII. CONCLUSION
	VIII. REFERENCES

