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Abstract—Phishing remains one of the most effective yet 
common cyber threats, exploiting human behavior by 
engineering deceptive websites to steal vital information. The 
evolving phishing tactics are outpacing native safe browser 
support. This project proposes a Chrome extension that 
integrates a multi-layered phishing detection approach by 
using ML, URL similarity detection, network behavior 
analysis, and page design analysis. This extension provides to 
not only protect users, but to also educate them on why a 
website has been flagged as phishing. Evaluation will be 
performed on phishing and legitimate website datasets with 
performance measured by accuracy and precision.   

Keywords—Phishing Detection, Machine Learning, Network 
Behavior, Feature Design 

I.​ INTRODUCTION 
Our project proposes developing a Google Chrome 

Extension that combines multiple phishing detection 
techniques such as URL similarity analysis, network 
behavior monitoring, and machine learning. The extension 
will analyze URLs via logistic regression, inspect page 
content, and observe network request behavior to provide 
real-time warnings to users. By combining multiple 
phishing detection strategies, the extension's goal is to catch 
attacks that evade traditional blacklist systems and provide 
users explainable insights on why such websites might be 
dangerous. 

                                                                                                       
II.​ MOTIVATION FOR PROJECT 

Phishing continues to be one of the most widespread 
and effective cyber threats, as more breakthroughs are made 
in the field of cybersecurity, human behavior remains to still 
be the weakest link in a system. Not only would this 
extension assist in preventing successful phishing attacks, 
but it would also assist users to be able to identify broader 
patterns of online deception. By presenting clear 
explanations on why a website has been flagged as 
suspicious, the users can be educated and build long-term 
awareness as phishing gets more advanced. 

As graduate students currently taking network security, 
we are motivated to pursue this project due to the 
opportunity to apply network security concepts in a practical 
manner. Building a chrome extension allows us to design, 
implement, and evaluate practical countermeasures and 
helps bridge the gap between security research and software 
engineering. This endeavor would help strengthen our 
knowledge of protocols, traffic patterns and adversarial 
behavior. By doing so, we are able to incorporate network 
security in a practical sense alongside with our other skills 
we are implementing into this project.                                                          

III.   BACKGROUND 
Phishing has evolved into one of the most common 

attack vectors and damaging forms of cybercrime, targeting 
the most vulnerable within a system, the human. By 
impersonating trusted entities, attackers deceive users into 
willingly give up their sensitive information instead of 

relying on technical attacks. As a result, phishing continues 
to dominate cyber incident reports, forcing security 
researchers to develop advanced detection mechanisms that 
have to stay up to date with the rapid evolution of phishing 
techniques. 

Phishing website detection has shifted from heuristic 
and blacklist-based approaches and towards machine 
learning classification due to its rising sophistication. 
Traditional systems struggle against zero-day threats, 
whereas machine learning models can learn based on 
statistical irregularities rather than predetermined cases. 
URL-based ML models transform the URL string into 
lexical and structural attributes, such as: length, entropy, 
homograph similarity, etc, all as numerical values. 
Classifiers such as a Random Forest algorithm identify 
patterns present within the relationship between attributes 
and can correlate it with phishing behaviour. The random 
forest algorithm consists of multiple decision trees that 
come together and have a majority vote of their final 
classification results. Each tree provides its own answer 
which gives developers and researchers a deeper insight of 
what features contribute to a decision the most. This makes 
it well-suited as the first line of defense in a phishing 
detection system. 

However, modern phishing pages have developed 
counterstrategies that can get lower confidence scores when 
it comes to URL-only detection by using “safe” domains 
while embedding deceptive behaviour within the page 
content itself. This has driven the need for a hybrid 
detection model that combines URL-level classifiers with 
page content based analysis. Page level features include 
internal vs external link ratios, resource complexity, 
credential entry fields, metadata consistency, and more.  

Deploying a machine learning extension inside a 
browser extension would be able to combine both 
approaches into one. There are additional constraints that 
come with Chrome’s Manifest V3 architecture which limits 
access to network requests, background execution and 
deeper level inspection of APIs. These restrictions require 
inference logic to run locally using only client-visible 
features such as URLs and DOM content. The random 
forest models trained have to be stored in a browser 
compatible JSON format and have to be executed via 
custom JavaScript tree traversal. Ensuring that feature 
extraction remains efficient for real-time browsing is a key 
challenge. The nature of Random Forest provides rankings 
of feature importance which will be key for providing user 
explanations on why a website has triggered the phishing 
warning.                                                                                                           

IV.​ URL ANALYSIS 

A.​ Objective 

This section presents the development and evaluation of 
a machine learning subsystem designed for detecting if a 
given URL is either a phishing website or legitimate. The 
approach focuses on analyzing characteristics that were 

 



extracted from the URL itself. Unlike content-based or 
visual similarity models, this relies solely on URL-level 
features, enabling faster-real time evaluation. The objective 
of this component within the entire application is to be the 
first line of defense, flagging potential phishing attempts 
before content rendering or user interaction occurs. 

B.​ Dataset and Preprocessing 

​ The dataset has over 235,000 URLs from multiple 
distinct sources to ensure a diverse and balanced dataset 
source of both legitimate and phishing websites. To ensure 
integrity, all URLs were validated and normalized through 
the following standardization process: 

●​ Lowercasing all characters 
●​ Removing trailing slashes 
●​ Normalizing URL encodings 
●​ Removing redundant delimiters 
●​ Deduplicating URLs to prevent Bias 

 
C.​ Url Feature Engineering 

Each URL is transformed into a multi-dimensional 
numerical representation composed of 50 features across 
structural, domain-level, semantic, and statistical indicators. 
This ensures the model can learn from both explicit patterns 
(e.g., suspicious tokens) and latent irregularities (e.g., 
entropy deviations). 

Category Features 

Basic URL Structure (12) Url_length, domain_length, 
domain_name_length, 
tld_length, path_length, 
query_length, path_depth, 
character counts, 
has_file_extension, 
suspicious_file_ext, 
double_slash, 
trialing_slash, uses_http, 
uses_https 

Domain Analysis (8) Subdomain_count, 
has_subdomain, has_port, 
has_ip, has_suspicious_tld, 
has_numbers_in_domain, 
domain_entropy 

Path Metrics(3) Num_params, 
has_suspicious_params, 
query_length, path_length, 
path_depth, file extensions 

Suspicious Patterns & 
Obfuscation (10) 

Has_at_symbol, 
has_shortner, 
has_suspicious_keywords, 
has_obfuscation, 
num_obfuscated_chars, 
obfuscation_ratio, 
digit_ratio, letter_ratio, 

special_char_ratio, 
url_entropy 

Brand Detection & 
Homograph (9) 

Suspicious_brand_usage, 
brand_in_registered_domai
n, brand_in_subdomain, 
brand_in_path_or_query, 
brand_mismatch, 
brand_similairity_registere
d, 
brand_similarirty_subdoma
in, brand_similairty_path, 
brand_homograph 

Fig. 1.  URL Feature categories 

 

D. Hybrid Domain-Path Ensemble 

A key innovation in this implementation was a 
dual-model weighted ensemble approach that separated 
domain analysis from path analysis. The path model did 
reuse non-domain specific features present in the domain 
analysis. The total weighted model had a 80% domain 20% 
pathing split. 

Parameter Value 

Number of Trees 100 

Max Depth  10 

Min samples per Leaf 5 

Min Samples Split 5 

Sampling Bootstrap 

Criterion Gini Impurity  

Training-Testing split 85-15 

Figure 2, URL Model Param Values 

 

E. Testing Results and Evaluation  

Below are the testing results and evaluation of the ML 
algorithm using the gathered datasets. 
 

Metric Score 

Accuracy 99.33% 

Precision 99.45% 

Recall 99.38% 

F1-Score 99.42% 



False negatives 126 

False positives 113 

True Negatives 14,973 

True Positives 20,358 

Fig. 3.   Final URL Model Results 

The top contributing features reveal that protocol and 
path structure are the strongest indicators, with protocol 
features resulting in 41.7% of model decisions, path 
structure features contributing 32.5%, and the remaining six 
out of the top 10 resulting in ~17% 

 
 

Feature Importance 

uses_https 22.38% 

uses_http 19.32% 

num_slashes 12.48% 

path_depth 10.66% 

digit_ratio 3.96% 

brand_similarity_subdomai
n 

3.93% 

trailing_slash 3.37% 

url_length 2.04% 

Brand_similiarity_path 1.90% 

Fig. 4.   Top 10 important URL features  

Manual inspection of misclassified URLs revealed that 
196 out of the 239 total errors (82%) with 102 false 
positives and 94 false negatives involved URLs with 
irregularly long or complex paths. This can be attributed to 
the limited path-specific feature set, which lacks granularity 
to distinguish between legitimate complex paths and 
malicious obfuscation. Specifically, legitimate URLs 
containing UUIDs, session tokens, hash identified, 
legitimate file names inflate path length and entropy metrics 
in ways that are similar to phishing characteristics. 
Additionally, path segments such as /login, /verify, account 
trigger false positives despite being commonplace in 
legitimate authentication flows.  

F.  Conclusion of URL analysis 

The URL-based model achieves 99.93% accuracy with 
minimal false negatives making it suitable to act as the 
first-line of defense. The hybrid domain-path ensemble 
architecture provides flexibility in weighting component 
contributions and the feature importance analysis confirms 
that path complexity and protocols are the most 

discriminating factors in identifying phishing attempts. 
Error analysis reveals that the majority of misclassifications 
stem from path complexity edge cases that context-aware 
keyword analysis and feature engineering around UUID 
recognition would be needed for real world accuracy 
improvements. 

V. WEBSITE DESIGN ANALYSIS 

A.​ Objective 

The webpage design analysis module aims to examine 
the visual and structural components of a website to detect 
subtle differences between legitimate and phishing pages. 
While the URL-based model focuses on string-level 
analysis, this stage evaluates what is actually displayed once 
the page is loaded. By analyzing the Document Object 
Model (DOM), visible content, embedded resources, and 
basic network behavior indicators, the system provides a 
deeper layer of defense against deceptive phishing attacks. 
This layer acts as the second line of defense after URL 
analysis, specifically targeting phishing sites that use 
safe-looking URLs but expose inconsistencies in page 
design. According to Li et al. [1], integrating content-based 
and structure-based webpage features significantly improves 
phishing detection accuracy compared to URL-only 
methods. 

B.​ Data Collection and Scraping 

To extract webpage data, we automated the process using 
Selenium WebDriver and BeautifulSoup. Selenium was 
employed to load each webpage, including dynamically 
generated content, while BeautifulSoup was used to parse 
the rendered HTML. This hybrid approach allowed us to 
analyze both static and dynamic features of the page, 
consistent with recommended practices in feature-based 
phishing detection research [1]. 

The scraper captured multiple elements from each 
webpage: 

The scraper captured multiple elements from each webpage: 

 
●​ Page Text: all visible text from headings, 

paragraphs, and hyperlinks 

●​ Images and Media: image filenames, counts, and 
embedded resource paths 

●​ Links and Forms: ratio of internal to external links, 
presence of credential fields, and use of suspicious 
keywords such as 'login', 'verify', or 'update' 

●​ Layout Characteristics: DOM depth, number of 
unique HTML tags, and the ratio of scripts to 
content tags 

●​ Network Activity: external resource requests, SSL 
certificate data, and domain origins of linked 
elements 



All collected attributes were converted into numeric or 
boolean representations to ensure they could be easily 
incorporated into a machine learning pipeline. 

C.​ Feature Engineering 

Following Li et al. [1], content structure and network 
interaction patterns provide valuable indicators of phishing 
activity. This separate page dataset contained 235,000 
webpages with pre-extracted HTML features. Each page 
was scraped and analyzed to extract structural and 
content-based indicators to be trained on with the same 
Random Forest model architecture used for URL analysis. 
Each webpage has 28 features extracted from the scraped 
content organized into the following categories: 

Category Features 

Content Structure (3) LineOfCode, 
LargestLineLength, 
HasTitle 

Title Matching (2) DomainTitleMatchScore, 
URLTitleMatchScore 

Trust Signals (4) HasFavicon, Robots, 
IsResponsive, 
HasCopyRightInfo 

Redirect Analysis (2) NoOfURLRedirect, 
NoOfSelfRedirect 

Metadata (1) HasDescription 

DOM Structure (2) NoOfPopup, NoOfiFRame 

Form Analysis (4) HasExternalFormSubmit, 
HasSubmitButton, 
HasHiddenFields, 
HasPasswordField 

Social Presence(1) HasSocialNet 

Keyword Detection (3) Bank, Pay, Crypto 

Resource Counts (3) NoOfImage, NoOfCSS, 
NoOfJS 

Link Analysis (3) NoOfSelfRef, 
NoOfEmptyRef, 
NoOfExternalRef 

Fig. 5.   Page Model Features 

 

D.​ Role in the System 
 

The page analysis module runs after the initial URL 
screening and provides deeper inspection of the page's 
visual and structural behavior. It is particularly effective at 
detecting cloned or template-based phishing pages that may 

bypass URL-level checks. The contribution to the final 
model follows a weighted ensemble approach: 
 

●​ URL Model: 80% weight 
●​ Page Model: 20% weight 

 
The combined score generates a risk rating of Safe, Mixed, 
or Suspicious. This weighting reflects the reliability 
hierarchy where URL features provide faster, more 
definitive signals, while page features add contextual 
validation and reduce false negatives. 
 
 

E.​ Feature importance Analysis 
 

The top contributing features reveal that external 
reference patterns and resource and resource counts provide 
the strongest indicators to determine a page's legitimacy. 
 

Feature Importance 

NoOfExternalRef 24.67% 

NoOfSelfReg 14.91% 

NoOfImage 13.15% 

LineOfCode 12.22% 

NoOfJS 8.44% 

NoOfCSS 6.22% 

HasSocialNet 5.68% 

HasCopyRightInfo 4.51% 

HasDescription 3.14% 

Fig. 6.   Top 10 Important Page Model Features  

 

F.​ Results & Parameters 
 

Parameter Value 

Number of Trees 100 

Max Depth  10 

Min samples per Leaf 2 

Min Samples Split 5 

Sampling Bootstrap 

Criterion Gini Impurity  

Training-Testing split 85-15 



Figure 7, Page model Param Values 

 

Metric Score 

Accuracy 99.70% 

Precision 99.70% 

Recall 99.70% 

F1-Score 99.70% 

True positives 20,207 

True negatives 15,056 

False positives 86 

False negatives 20 

Fig. 8.   Final Page Model Results 

 

G.​ Key Findings 
 
1)​ Link Structure 

Link analysis features (NoOfExternalRef, NoOfSelfRef) 
accounted for over 39.5% of model decisions, indicating 
that phishing pages exhibit distinct linking patterns, often 
lacking internal navigation or containing excessive external 
references. Phishing sites often contain a disproportionate 
amount of external references because common attack kits 
typically load scripts, images, and styling resources from 
third-party hosting services to reduce development effort 
while trying to maximize its likelihood of seeming 
legitimate. Conversely, legitimate websites employ their 
own link ecosystem that reinforces branding and site 
identity. This aligns with existing research showing that 
phishing pages generally contain fewer internal links and a 
shallower structure depth than legitimate domains [2]. 

2)​ Resource Complexity Reflects Development 
Investment 

Resource complexity features contributed to 40% of 
model decisions, showcasing that phishing pages are 
typically simpler clones with fewer assets. As a result, 
phishing pages contain fewer images, shorter frontend code, 
and minimal CSS & JavaScript. Legitimate websites invest 
in more media assets, dynamic components, responsive 
frameworks, and interactive website design. Security trend 
reports state that due to the short-lived, low-investment 
nature of phishing pages, they are designed with rapid 
deployment in mind, which contributes to their low resource 
diversity [3]. 

3)​ Trust Signal Absence 

Professional indicator features (HasSocialNet, 
HasCopyRightInfo, HasDescription) contribute to 13.51% 

of the model's decision-making. Legitimate organizations 
reliably include social media icons, copyright notices, 
brand metadata, and SEO-optimized metadata. These 
attributes do not assist in tricking users about the 
legitimacy of a website. Prior studies confirm that the 
absence of branding signals indicates a higher likelihood of 
phishing attempts [4]. 

4)​ Form Features as Secondary Validators 

Despite form-related features (HasPasswordField, 
HasHiddenFields) not showing significant individual 
importance, they remain essential for detecting credential 
harvesting behavior. Their significance only shows when 
combined with other suspicious features. Research supports 
that form characteristics when tested individually are weak 
indicators but they become high-level discriminators when 
assessed in tandem with structural and content-level 
anomalies [5]. 

H. Benefits of the Page Analysis Layer 

The integration of page-based analysis provides several key 
advantages: 

●​ Reduces false negatives by catching sophisticated 
phishing attempts that pass URL screening 

●​ Detects fake login pages and brand impersonation 
through content and form analysis 

●​ Improves reliability of the extension's warnings 
through multi-layered validation 

●​ Catches cloned pages that replicate legitimate 
designs but lack proper resource investment 

I. Issues & Limitations 

1)​ Dynamic content & JavaScript Rendering 

A major limitation of a page-based ML analysis 
approach is the inability to fully analyze dynamically 
rendered content. This was an issue due to our scraping 
implementation being unable to obtain these features, which 
was consistent with the referenced datasets also not having 
those features listed. Modern phishing kits are increasingly 
using script-injected content which is both difficult to 
scrape, and to assess its harm capabilities without fully 
rendering the website. Lastly, because our system captures 
the DOM at a single point in time, it may miss malicious 
elements introduced at a later point. 

2)​ Redirect Chain Analysis  

The redirect-related features exhibited insignificant 
importance totalling 0.0502%. This is due to Google 
Chrome extensions being entirely unable to observe 
HTTP-level request sequences. DOM inspect cannot 
reliably expose redirect chains, especially before the page 
fully loads. 

3)​ Single-Page analysis scope 

The current model analyzes pages individually without 
evaluating pages across the entire site. While phishing 



websites tend to be shallow and not have many subpages as 
they tend to only have isolated credential harvesting pages; 
Having multiple pages is a good sign of a website's 
legitimacy. Expanding the analysis to multi-page behaviour 
could improve accuracy but would run into the risk of  
causing server issues due to deeper page scraping. 

 

VI. EXTENSION IMPLEMENTATION 
 

To achieve a reliable phishing detection, we combined 
the URL-based approach with the page-based approach. 
Each technique captures different dimensions of phishing 
behaviour, and their integrations from a multi-layered 
defense. The integration pipeline follows a staged sequential 
workflow: 
 
A.​ Stage 1- URL Pre-screening (Fast Filter Layer) 

When a user attempts to access a website, the extension 
immediately extracts and processes the raw URL. 

●​ The engineered URL features are computed locally 

●​ The random forest ensemble provides a probability 
score indicating the likelihood that the website is a 
phishing site. 

●​ If the prediction is above the warning threshold 
(>0.5), the extension issues a warning. 

●​ If the prediction is above the blocked threshold 
(>0.85), the extension blocks the website entirely 
while providing the user why it has been flagged 
along with the option to continue. 

 

B.​ Stage 2 - Webpage Design 

       Once the URL passes initial screening or receives a 
borderline score, the extension proceeds to analyze the 
rendered website: 

●​ DOM Feature Extraction: After page load 
completes, the content script extracts 28 features 
(Section V) using JavaScript DOM APIs. 

●​ Page Model Prediction: Features are sent to the 
background service worker. 

●​ Weighted Combination: The final phishing 
likelihood is computed using weighted average: 
Combine_Score = (URL_Score × 0.8) + 
(Page_Score × 0.2) 

●​ If combined_Score >= 0.7, a full-screen warning is 
displayed to the user 

 

1.​ Chrome Extension Architecture 

The extension follows Chrome’s Manifest V3 
architecture [6] with three core components 

Background Service Worker (background.js) [7]: 

●​ Loads both URL and Page ML models on 
extension startup (JSON files) 

●​ Monitors all tab navigation events 
●​ Executes UrL prediction immediately on 

navigation 
●​ Receives page features from content scripts via 

message passing 
●​ Combines predictions using weighted averaging 
●​ Triggers warning  

Content Script (content.js) [8]: 

●​ Injected into every webpage user visits 
●​ Wait 500ms post-load for DOM stabilization 
●​ Extract 28 page features 
●​ Sends features to background worker 
●​ Display warnings when phishing detected 
●​ Shows discrete security badges with confidence 

percentages 

Popup Interface (popup.html/popup.js) 

●​ Activated when user clicks extension icon 
●​ Displays detailed analysis breakdown 

 
Fig. 9.   Popup Interface 

2.​ Machine Learning Integration 

The Python-trained scikit-learn Random Forest models 
cannot run directly in browsers. We developed a conversion 
pipeline: 

Model Export WorkFlow: 

1.​ Export Script: export_model_to_js.py and 
export_page_model_to_js.py 

2.​ Tree Extraction: Extracted decision tree structures 
from RandomForestClassifier 

3.​ Scaler Parameters: Exported StandardScaler mean 
and scale values for feature normalization 

4.​ Saved trees as JSON with split conditions and leaf 
values 

5.​ Model Variants: Generated full (100 trees) and lite 
(30 trees) version. 

JavaScript Model Implementation 

http://background.js
http://content.js


●​ Implemented Random Forest prediction logic in 
pure JavaScript (ml-model.js and page-model.js) 

●​ Supports feature scaling, tree traversal, and voting 
aggregation 

Feature Extraction in JavaScript 

●​ URL feature extraction ported to url-features.js 
●​ Webpage feature extraction uses DOM APIs (e.g., 

querySelectorALL) 

 

3. User Interface and Warning System 

 
Fig. 10.  Full-Screen Phishing Warning 

Displayed when the combined Score >= 0.7: 

●​ Large warning icon and color-coded risk indicator. 
●​ Show URL, prediction scores, and key reasons for 

detection. 
●​ “Go Back to Safety” and “Proceed Anyway” 

actions. 
●​ Includes a short disclaimer emphasizing possible 

positives 

Security badge displayed for all analyzed pages 

●​ Green badge for safe sites 
●​ Red badge for suspicious pages with confidence 

score. 
●​ Clicking the badge opens a detailed view in the 

popup. 
●​ Automatically fades for low-risk pages to avoid 

alert fatigue. 

4. Performance Optimization 

●​ Caching: 10-minutes LRU cache for URL 
predictions (<5ms lookup) 

●​ Lite Models: Reduced model size by 78% with 
<1% accuracy loss. 

●​ Lazy Loading: Models loaded on Startup; fallback 
deferred loader for reliability 

 5. Deployment 

Current deployment uses Chrome Developer Mode: 

1.​ Navigate to chrome://extensions/ 
2.​ Enable Developer mode. 
3.​ Select Load unpacked and choose the extension 

folder. 

4.​ Extension loads immediately for testing and 
evaluation. 

  6. Challenges  

●​ Random Forest in Browser: Python model cannot 
run in JavaScript. 

●​ Models too large & Slow performance: Original 
full models are too large (100 trees) which make 
the loading time long (~2.5 ms). 

●​ Some features only indicate phishing when 
combined with other features. For example, having 
multiple login forms is only suspicious if the site 
also lacks HTTPS. Individual feature flags in 
isolation can mislead users into thinking legit sites 
are dangerous. 

VII. CONCLUSION 
 

A.​ Main Limitations & Issues faced 

Although the system demonstrated capability in detecting 
site legitimacy with high accuracy in controlled testing, 
several limitations constrained its real-world performance. 
A major limitation of the extension was its inability to 
scrape and analyze dynamically injected JavaScript content, 
which is a critical feature for determining a website's status. 
Modern phishing sites often render credential fields after the 
initial DOM load, but our extension only captures the initial 
snapshot of the website at 500ms post-load and could miss 
key details that appear later. 

Another significant limitation stemmed from Chrome's 
Manifest V3 architecture, which severely restricts an 
extension's access to network-level data. Because service 
workers cannot inspect full redirect chains and certificate 
details, redirect-related features contributed insignificantly 
(0.0502%). These restrictions prevented implementing 
Layer 3 network analysis that was present in the original 
project plan, which would have monitored SSL/TLS 
certificates, tracked redirect chains, analyzed external 
resource requests, and detected mixed content and 
suspicious connections. 

Despite the large dataset of 235,000+ entries for both URL 
and page models, limitations persisted. The page dataset 
was missing multiple features such as dynamically rendered 
attributes and comprehensive robot.txt checks, reducing 
model generalizability. The URL dataset had heavy 
emphasis on domains, making URLs with complex paths 
less commonplace. The model tended to overfit on 
domain-based analysis rather than holistic URL evaluation. 
For example, legitimate URLs with long paths containing 
UUIDs would trigger detection trees that emphasized URL 
length. While this issue was addressed with a split 
URL/Domain model with 80-20 weighting, the reference set 
for path-heavy URLs remained limited. 

Real-world testing revealed a higher false positive rate than 
the ML testing phase indicated. This discrepancy occurred 
because real testing happened late in development, causing 
unexpected edge cases to surface (mostly path-based). The 
HTTP/HTTPS feature dominance (40% combined 

http://ml-model.js
http://page-model.js
http://url-features.js


importance) meant that nearly every non-HTTPS URL was 
immediately flagged. Several features had less than 0.001% 
importance, indicating poor feature engineering decisions. 
Additionally, localhost testing for fake websites produced 
flags that would not be present in production environments, 
skewing early validation results. 

Despite these constraints, each limitation provides a clear 
direction for future improvements. Addressing them will be 
crucial to enhance the extension's reliability in real-world 
settings that are increasingly dependent on dynamic content 
and modern web technologies. 

B.​ Future work 

Looking ahead, several enhancements can improve the 
reliability and adaptability of this extension in real-world 
scenarios. One major direction is the development of a 
vetted community-driven blacklist and whitelist system. 
When a report is submitted and verified, it can be added to 
the training data for continuous model improvement. A 
dynamic whitelist would not only reduce false positives in 
production but could enable more precise detection of brand 
spoofing attacks, an area where URL-only heuristics remain 
limited. 

Currently, our extension flags individual features in 
isolation (e.g, “brand name in URL”), this makes users 
confused when they see warnings on legitimate sites, but the 
Random Forest Model actually makes decisions based on 
feature combinations. For example, multiple forms are only 
suspicious when combined with things like missing HTTPS. 
So our future work is to find a way to help users understand 
why specific combinations indicate phishing rather than just 
listing flagged features.  

Expanding the diversity and scale of all datasets is 
critical. The URL dataset needs more path-oriented URLs 
with complex structures (UUIDs, session tokens, hash 
identifiers) to improve the model's ability to distinguish 
between legitimate complexity and malicious obfuscation. 
The page dataset requires modernization with features that 
capture JavaScript-rendered content, single-page application 
behaviors, and contemporary web framework patterns. 

Another critical improvement is advancing the page 
analysis model to better support dynamic and 
JavaScript-heavy websites. The present model struggled 
with SPAs utilizing modern frameworks, suggesting that 
feature extraction must incorporate behavior-based 
monitoring and continuous DOM observation techniques 
rather than single-point-in-time snapshots. Implementing 
delayed feature extraction at multiple intervals or 
monitoring DOM mutation events could capture phishing 
elements that load asynchronously. 

More rigorous real-world testing is essential. The 
extension needs extensive testing with actual phishing 
websites in production environments rather than localhost 
simulations. This would expose edge cases earlier in 
development and allow for iterative refinement of the model 
and thresholds. Beta testing with real users could provide 

valuable feedback on false positive rates and usability 
issues. 

Finally, revisiting the original vision for Layer 3 network 
analysis remains a priority, as it provides a whole new 
avenue for model features and assists with adding more 
features for the page model. While Manifest V3 imposes 
restrictions, exploring workarounds such as 
declarativeNetRequest API capabilities or companion native 
messaging hosts could enable limited network monitoring. 
Features like certificate validation, mixed content detection, 
and redirect chain analysis would significantly strengthen 
detection capabilities. 

Improving contextual explanations is also necessary. 
Users need clearer, more actionable information about why 
a site was flagged, presented in non-technical language. 
This educational component enhances long-term user 
awareness and trust in the system. Collectively, these 
improvements would strengthen the extension's accuracy, 
transparency, and usability, making it a production-ready 
phishing defense system. 

C.​ Final conclusion 

The development of this multi-layed phishing detection 
system demonstrates that combining URL-based machine 
learning, DOM structural analysis, and browser-integrated 
feature extraction can enhance real-time phishing protection. 
The random forest URL model achieved high precision and 
accuracy, proving the effectiveness of treating it as a first 
line of defense. Complementing the URL model, the 
webpage design model provided deeper insight into resource 
usage, trust signals, link structures, and form behaviour, all 
attributes that legitimate websites usually contain whereas 
phishing pages often lack. The systems architecture 
implemented within Chrome’s Manifest V3 constraints 
utilizes these layers into a functional browser extension 
capable of delivering clear and explainable warnings to 
users. 

Beyond classification performance, this project 
highlights the importance of educating users about phishing 
websites. The extension not only alerts users to malicious 
activity but explains why the page is suspicious, reinforcing 
safe browsing habits and long-term awareness. This hybrid 
design also emphasizes the need of a holistic approach 
rather than just focusing on one method. This project went 
deeper when compared to the standard phishing URL ML 
projects. By utilizing this extension in a real world setting, 
project members were able to identify signs of a phishing 
website that a traditional training/testing verification would. 
Overall, this project bridges the gap between academic 
research and deployable security tools, demonstrating a 
practical and scalable framework for protecting users 
against the increasingly sophisticated phishing landscape 
and its threats. 
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